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A phase model for a population of oscillators with random excitatory and 
inhibitory mean-field coupling and subject to external white noise random for- 
ces is proposed and studied. In the thermodynamic limit different stable phases 
for the oscillator population may be found: (i) an incoherent state where all 
possible values of an oscillator phase are equally probable, (ii) a synchronized 
state where the population has a nonzero collective phase; (iii) a glassy phase 
where the global synchronization is zero but the oscillators are in phase with the 
random disorder; and (iv) a mixed phase where the oscillators are partially syn- 
chronized and partially in phase with the disorder. These predictions are based 
upon bifurcation analysis of the reduced equation valid at the thermodynamic 
limit and confirmed by Brownian simulation. 

KEY WORDS: Nonlinear oscillators; synchronization; mean-field model; 
random disorder model. 

1. INTRODUCTION 

Aspec ts  of  the b e h a v i o r  of m a n y  complex  systems can be under s tood  by  
s tudy ing  the synch ron i za t i on  of  l a rge  popu la t ions  of  coup led  oscil lators:  
dynamics  of  charge-dens i ty  waves,  ~1) chemical  react ions,  (2) and  biological  
p h e n o m e n a  ~3) such as  the synch ronous  f lashing of swarms  of  fireflies ~4~ and  
neura l  ne twork  m o d e l s  of  sensory processing.  (5) 

A pa r t i cu l a r ly  s imple  mode l  was pu t  forth by  K u r a m o t o J  6) It  
cons is ted  of  a phase - coup l ed  p o p u l a t i o n  of  oscil lators,  each running at  a 
f requency  p icked up  f rom a given d i s t r ibu t ion ,  and  all of  them coupled by 
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a mean-field interaction. Thus, each oscillator tries to run independently at 
its own frequency while the coupling tends to synchronize it to all others. 
When the coupling is sufficiently weak the oscillators run incoherently, 
whereas beyond a certain threshold collective synchronization is estab- 
lished. In the limit of infinitely many oscillators synchronization is 
measured by an order parameter which is the average of the cosine of the 
phase. 

The order parameter is different from zero when the oscillators are 
synchronized. A rigorous analysis of the linear stability of the incoherent 
(nonsynchronized) state in Kuramoto's model was performed by Strogatz 
and Mirollo. (7) Because of technical reasons, they added a small indepen- 
dent white noise term to each oscillator. These noise terms can be inter- 
preted as thermal fluctuations (as in the critical dynamics of mean-field 
ferromagnetic materials (8)) or rapid fluctuations of the intrinsic frequencies 
of the oscillators. When the distribution g(co) of intrinsic oscillator frequen- 
cies is unimodal or nonincreasing the synchronization transition is 
continuous and the synchronized state is stationary. (7) A bimodal g(co) 
may change the character of the transition: it may become a first-order 
transition to a stationary synchronized state or even a continuous 
transition to a time-periodic synchronized state. ~9) 

Kuramoto's model with next-neighbor couplings has been considered 
by Strogatz and Mirollo, (1~ who proved that no synchronization was 
possible in one-dimensional chains unless the coupling increased as the 
square root of the number of oscillators. They also proved that in higher- 
dimensional lattices large clusters of synchronized oscillators necessarily 
had a spongelike structure. ~1~ Daido ~H) set up a renormalization-group 
analysis reminiscent of the Kadanoff block spin renormalization group. He 
defined the "blOck oscillator" and was able to determine the lower critical 
dimension for an oscillator ensemble to synchronize. Lumer and Huber- 
man ~12) extended Daido's analysis to the case of hierarchical coupling 
between the oscillators with the branching ratio playing the role of spatial 
dimensionality. However, all these renormalization group calculations do 
not describe analytically the synchronized state near the synchronization 
transition, as was done for a different model with external white noise 
random processes but without a intrinsic distribution of frequencies. ~13) 

In this paper we study a generalization of Kuramoto's model whose 
dynamics is governed by 

N ~ = co i + 7i( t )  + ~ K u sin(0j- 0i) (1.1) 
j=l 

Here Oi and o~i represent the phase and natural frequency of the ith 
oscillator, K o. the coupling Strength between oscillators, and N the size of 
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the population, and y~(t) are independent white noise random processes 
with zero mean and correlation 

( T i ( t ) T j ( t ' ) ) = 2 D 6 i j 3 ( t - t ' ) ,  D > 0  (1.2) 

The frequencies o)i are randomly distributed over the population with a 
density g(~o). Often, the coupling strength is considered to be a simply 
positive constant quantity which is equal for all the oscillators. However, 
for biological systems (3) the coupling between them may also be random. 

This idea was suggested previously by Daido, ~14) who considered a site 
disorder model with Mattis interactions. (15) The most relevant effect found 
in Daido's model was the appearance of a new glasslike phase reminiscent 
of random magnetic systems such as spin glasses. ~lv) However, this model 
presents two main drawbacks: (i) randomness is removable after a suitable 
Mattis transformation and (ii) it lacks frustration, which is one of the most 
important ingredients of random systems. 

Motivated by these considerations, we propose a different type of site 
disorder model characterized by coupling interactions of Van Hemmen's 
type,(18) 

Ko K1 
Ko. = ~ -  + ~ -  [~irb + ~j~h], Ko, K~ > 0  (1.3) 

where ~i and ~h are independent identically distributed (i.i.d.) random 
variables that may take values + 1 or - 1  with probability 1/2. (A 
generalization to i.i.d, random variables with an even distribution about 
zero and finite variance is straightforward and will be omitted.) Clearly, K o 
takes the value Ko/N with probability 1/2 and the values (Ko + 2K1)/N with 
probability 1/4. For K o < 2K~ we have an excitatory coupling (K,j > 0) with 
probability 3/4 and an inhibitory coupling (K~<0) with probability 1/4. 
This is a rough approximation to the Mexican-hat neural coupling (5' 16) or 
the RKKY interaction in spin glasses. (19~ 

In contrast to the Mattis interactions considered by Daido, the main 
effect of the interaction (1.3) is, as in Van Hemmen's model or its soft-spin 
version, ~2~ to cause frustration. A positive K o. tends to synchronize the 
oscillators i, j in phase, whereas a negative coupling tends to place them in 
phase opposition ([0~-0j[---n). Our goal is to examine the new properties 
of the system by evaluating the effect of frustration on the synchronized 
phase, checking whether other new phases may appear. If this is the case, 
we will discuss the physical meaning of the new phases in terms of the 
dynamical behavior of the oscillators. 

The study of large assemblies of interacting oscillators is also inter- 
esting in other fields, such as neural networks. It has been shown by 
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neurophysiological experiments that neurons in the visual cortex have an 
oscillatory behavior whose temporal activity can be synchronized by 
external stimuli. 

To reproduce this interesting behavior several mechanisms have been 
proposed recently. Sompolinsky et al. (5) have studied a model in the 
context of processing visual stimuli coded for orientation whose predictions 
agree with experimental data obtained from the cat visual cortex. The main 
features of this model are a generalized version of Kuramoto's equation 
(1.1) and a Hebb-like coupling 

K U = Vi W o Vj (1.4) 

where V i is essentially the firing rate of the ith neuron (oscillator) and W o 
specifies the connectivity of the system. For technical reasons Sompolinsky 
et aL had to use only excitatory couplings, although there is evidence that 
W o. as a function of [ i - J l  may have an excitatory core and a inhibitory 
background (see Fig. 4 of ref. 5). In the context of associative memory 
other authors <zl) consider a single oscillator as a system formed by two 
neurons (actually group of neurons), excitatory and inhibitory, whose 
dynamics is described by a set of coupled differential equations. In these 
models inhibition plays an important role since it controls the activity of 
the elements of the network. In fact, it has been shown that for just two 
oscillators we may have them either synchronized in phase (excitatory 
interaction) or in phase opposition shifted 180 ~ (inhibitory interaction). 
However, it is claimed that phase opposition (the analog of an antiferro- 
magnetic phase) is difficult to achieve for a large population of oscillators. 
We will show that a mechanism based on Van Hemmen's interaction is 
capable of displaying such behavior by means of a suitable tuning of the 
values of the coupling constants K0, K1. 

Our analysis shows that the model (1.1), (1.3) may have different 
states in the N ~ ~ limit, according to the values of the parameters. These 
states are characterized by the following order parameters: 

1 u 
= ~ e i~ (1.5) rei~ ~rj= i 

1 N 
qr ir ----- ~Tj~ 1 Cje joy (1.6) 

1 N 
q . e  io~ = ~ j~_al= ~je iOj (1.7) 

with r, qr q,>~0, and are: 
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1. The incoherent state, r = qr = q, = 0. 

2. The synchronized state, r > 0, qr = q, = 0. 

3. The glass state, r = 0, qr = q, > 0. 

4. The mixed phase, r > 0, qr = qn > 0. 

The incoherent and synchronized phases also appear in Kuramoto's 
model, (6"7'9) to which (1.3) reduces when K~=0.  In the glass phase the 
oscillators are synchronized to the site disorder but are not globally 
synchronized. Lastly, in the mixed phase, the oscillators are partly 
synchronized and partly correlated to the site disorder. 

The rest of the paper is organized as follows. In Section 2, we write 
the nonlinear Fokker-Planck equation for the one-oscillator probability 
density in the N ~ oc limit. We analyze the incoherent phase and its linear 
stability in the same section. The bifurcations to the other phases are 
considered in Section 3. In Section 4 we give the results of a Brownian 
simulation of the model, which illustrates the dynamical evolution toward 
the corresponding stable phases of the model at different sides of the phase 
transition lines. Finally, we devote Section 5 to a discussion of our results 
and to concluding remarks. 

2. PROBABIL ITY  D E N S I T Y  A N D  EVOLUTION 

In the limit N ~ oe, it is possible to derive a nonlinear Fokker-Planck 
equation for the one-oscillator probability density. The procedure has been 
sketched in ref. 22: write p(O, t, o9, ~, I?) in terms of the N-oscillator- 
probability-density, PN, solution of the linear Fokker-Planck equation 
associated to the system (1.1)-(1.3) for an initial condition where PN is the 
product of the N one-oscillator probability densities. Then write the path 
integral representation of p~ in the resulting expression and perform 
approximately the integrals by means of the saddle point method in the 
limit of N ~  oe. The resulting expression for p(O, t, co, ~, rl) is shown to 
obey 

ap _ O2p c~ 
 7=0 oo (pv) (2.1) 

where the drift velocity is given by 

v(O, t, co, ~, rl) = o) + Kor sin(~O - 0) + K1 [r s in(~  - 0) 

+ ~/qr sin(fie - 0)] (2.2) 
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and the order parameter amplitudes r(t), qr q,(t) and phases ~O(t), q~(t), 
ft,(t) are given in terms of p and g(og) by 

2~ 
rei~' = fo e'~ t, co, ~, rl) g(co) p(~) p(rl) dO do9 d~ drl (2.3) 

qee i~r = ei~ t, co, ~, rl) g(o9) p(~) p(tl) dO do9 d~ drl (2.4) 

and a similar equation for qn exp(i~b,). The probability density has to be 
2re-periodic in 0 and normalized, 

2~ 
:oP(O, t ,  09, ~, q)dO= 1 (2.5) 

In Eqs. (2.3)-(2.4) the probability distribution for the random variables 
and ~/is given by 

p(~) = 116(~ + 1) + 6 ( ~ -  1)] (2.6) 

Most of our results hold for more general p(~) and modifications of the 
others are straightforward. 

A particularly simple stationary solution of (2.1)-(2.6) is the 
incoherent equiprobability distribution 

1 
po(O, t, co, ~, q )=  2"-~ (2.7) 

Its linear stability may be analyzed following step by step Strogatz and 
Mirollo's analysis for Kuramoto's model [to which (2.1)-(2.6) reduce when 
K1 = 0]. The main results are the following: 

Let us consider small disturbances from the incoherent solution 

1 
p(O,t, og,r og,r s ,~ l  (2.8) 

Then/~(0, co, 4, r/) obeys the equation 

,~  = D ~--ff~- co T~ +-T~- cos(~ - O) 

g l  + ~ I-r cos ( ,~ -  o) + r162 cos(,~,, - o)3 (2.9) 
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where 
~e iO = 

~ e  i~r = 

( e i~ At(O, co, ~, r/ ) ) 

~ '~ co, 3, ~) g(o)) P(~) P(r/) ei~ At( O, dO do9 d~ dr/ (2.10) 

(~e ;~ At(0, o), ~, r/)) 
27: 

=fo ei~ o)' 4' r/) g(c~ P(~) P(r/) dO do) d4 dr/ (2.11) 

and similarly for ~ exp(i~). The At(0, w, 4, t/) is 2r>periodic in 0 and must 
satisfy 

2re 

Io NO, o),~,r/)dO=O (2.12) 

Let us observe that (a) the continuous spectrum of the operator on the 
right-hand side of Eq. (2.9) has always Re 2<0.  The discrete spectrum 
(when it is nonempty) contains only real eigenvalues when g(o)) is even 
and nonincreasingJ 7) For a bimodal distribution g(o)) there may be 
complex conjugate eigenvalues. (9) 

(b) The eigenvalues are determined by noticing that only the first 
Fourier harmonic of At 

p(O, co, 4, r/) = ~ cn(o), 4, r/)e in~ c_~ = ~ (2.13) 

contributes to the order parameters (2.10) and (2.11). From (2.9) we find 

c , = - 2 + D + i o  ) c,(o),r/,4)g(o))do)p(r/)p(~)dr/d4 

K1 J + -~-f cl(o), r/, 4) g(w) do) r/p(r/) ~p(~) dr/d~ (2.14) 

which can be written in terms of the order parameters of the system as 

c l = 2 + D + i o  ) --~?ei~'+ (qcr/e&+q,~e i~.) (2.15) 

?ed'=2n f cl(t,o),r/, 4) g(o))do) p(r/) p(4)dr/d~ (2.16) 

since 

71S~'~=2rcfc~(t,o),r/,~)g(o))dogr (2.1 7 ) 
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and a similar expression for 0. exp(ir As a final result, we find two self- 
consistent equations for the order parameters which give the critical values 
of the coupling parameters K;, K~ above which the oscillators synchronize: 

Ko( ;.+D \ 
T (2 + D) + 0,2/= 1 

2 \ ( 2 +  D)2 +to 2 =1 

(2.18) 

where 

2 + D  \ 2 + D  (2.19) 
(2 + D) ~ + co2/= f g(co) do) (). + D) 2 + o)2 

These equations show that the incoherent solution can be unstabilized 
through two different mechanisms. For Ko > K; and K 1 < K~ the system 
enters in a synchronized (ferromagnetic) phase which has been extensively 
analyzed by Kuramoto and by Strogatz and Mirollo. For K0 < K; and 
K1 > K~ a new type of entrainment appears characterized by qr q, 50,  
which means that the oscillators synchronize with the disorder defined in 

c c (1.3). If Ko, KI > K o -  K~, then an interesting competitive effect between 
both phases takes place, leading to a new phase which we describe in the 
next section. 

3. BIFURCATION ANALYSIS 

To study the diagram of bifurcations from the incoherent solution to 
the other stable phases we shall analyze the stationary solutions of the 
Fokker-Planck equation (2.1) 

0 = D ~-~- {oa + Kor sin(0 - 0) 

+ K~ [~q. sin(r - 0) + t/qr sin(r162 - 0)] } p)  (3.1 ) 

which has the following solution: 

{ o~0 Ko r 
p=ABexp  -~-- +---D-- cos(0 - 0) 

+ ~ -  [ eq, cos(if, - 0) + r/qr cos(~br - 0)] l 
/ . J  ) 
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+B;~dOlexp(cO(O.~D01) Kor +-5-- [cos (0  - 0) - cos(0 - 01)] 

+ ~ { ~ q . [ c o s ( r  0 ) -  c o s ( r  01)3 

+ ~q~ [cos(r - 0) - cos(r - 01)] }) (3.2) 

Here A, B are two integration constants which can be determined from 
normalization and from the periodicity of p. We will also assume that 
qr = q, = q  and r162 = r = ~b. This hypothesis has been proved rigorously in 
other systems with Van Hemmen's interactions ~ 20) and although we will 
omit any type of proof in this paper, we will check the plausibility of the 
assumption in the next section just  devoted to Brownian simulation. Thus, 
the final expression for the probability density is 

f(O, 4, rl) S~ '~ dfl h(O, ~, 4, rl) 
P= S~" dO f(O, 4, rl) f~" dfi h(O, fl, r rl) (3.3) 

where 

I-K0 r . _ -D-K1 ] f(O, 4, r/) = exp L-- D --  cos[~ - 0) + (r/+ 4)q cos(r - 0) 
_1 

h(O, fl, 4, rl)=exp [-cOilD K~176 

-- KI"---~qD (r/+ 4) cos(r - fl - 0)]  

Finally, integration over r/, ~ gives the following four equations for the 
order parameter amplitudes and the mean phases: 

1 1 
r=-~A[cos(O-O), 1, 1"] + ~  A E c o s ( 0 - 0 ) ,  0, 0] 

1 
+ ~ A [cos(0 - O), -- i, -- 1 ] (3.4) 

1A [sin 0, 1, 1 ] + 1A [sin 0, 0, 0] + �88 [sin 0, - 1, - -  1 ] 

tan 0 = �88 0, 1, 1]+�89 O, O] + �88 O, - 1 ,  - 1 ]  (3.5) 

1 1 
q = ~ A [cos(0 -- r i, 1 ] -- ~ a [cos(0 -- 0), - 1, -- 1 ] (3.6) 

A[sin 0, i, 1 ] - A [ s i n  0, --1, - 1 ]  
t a n # = A [ c o s  0, 1, 1 ] - - A [ c o s  O, --1, - -1]  (3.7) 

822/70/3-4-27 
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where we have defined A as 

I~ ~ dO xf(O, ~, ,7) jor2" d# h(O, ~, ~, ,I) 
A[x, r tl]= j g(o)) &o ~ ~g" dO f(O, #, r/)f2,,jo dfi h(O, fl, s rl) (3.8) 

Numerical integration of these equations for a particular choice of the 
distribution of frequencies and a given amount of noise D provides the 
diagram of stable phases as a function of the coupling constants Ko and KI 
and consequently the dynamical behavior of the whole system. 

Our results have been obtained by considering an assembly of 
oscillators with natural frequencies uniformly distributed on the interval 
[ - v , v ]  with v=0.5 and for D=0.5.  Then, according to (2.18), the 
incoherent solution is unstable when either K0 or K1 is larger than the 
critical coupling 

2v 
KC= (3.9) 

arctan(v/D ) 

which for the parameters shown previously takes the value KC~ 1.27. This 
result is confirmed numerically, as we can see in Fig. 1. For Ko > K c and 

1.00 

0.80 

0.80 
0"  

("4 
II 

0.40 

0.20 

1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 

Ko,K1 
Fig. 1. Order parameters of  the system versus the coupling constants for the distribution of 
natural  frequencies and level of  noise given in the text. For  Ko, K~ < K c the only stable solu- 
tion is the incoherent one characterized by r = q = 0. For either (a) Ko > K c and KI < K c or 
(b) Ko < K c and KI > K" the incoherent solution is not  stable, leading to (a) a synchronized 
phase where r ~ 0 and q = 0, or (b) a glassy phase where r = 0 and q r 0. Notice that  in case 
(a) the figure represents r versus Ko, whereas in case (b) the figure represents 2q versus K 1. 
The bifurcation diagram of the system for Ko and K~ larger than K c is shown in Fig. 2. 
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K1 < K c the system enters a phase characterized by order parameters  r r 0 
and q = 0, which means that a macroscopic fraction of the total number  of 
oscillators (which increases as Ko increases) is synchronized coherently. In 
a magnetic system this phase corresponds to a state with nonvanishing 
magnetization. For  /'20 < K c and K1 > K c the system enters a new phase 
characterized by order parameters  r = 0 and q-C0, which means that a 
macroscopic fraction of the total number of oscillators is in phase with 
the disorder. This type of entrainment, which we have called glassy 
synchronization because it is the analogue of the glass phase reminiscent 
of spin glasses, implies the appearance of clusters of oscillators (spatially 
disordered) in phase opposition. 

Finally, for K0 > K r and K1 > K ~ we observe a mixed phase charac- 
terized by order parameters r e 0  and q ~ 0 where the oscillators are 
partially coherently synchronized and partially in phase opposition. It is 
important  to remark that to find the mixed phase from (3.5)-(3.9) it is con- 
venient to take into account the relationship between the phases ~b and tp 
of the two order parameters (2.3) and (2.4); otherwise the system flows 
toward one of the two branches defined by r = 0 and q ~ 0 or r ~ 0 and 
q = 0 .  For  the numerical values of v and D above, we have found 
I ~ -  ~1 ~ re/2. Figure 2 illustrates the diagram of stable phases as a function 

4 . 0  ~ i i J i i i 

5 . 5  

5.0 S G 
2.5 $ 

~~ 2.0 
1.5 
1.0 

[ G 
0,5, 
0 ~ 0  i i 0 [ f i _ ~ r _ 

0.0 0.5 1. 1.5 2.0 2.5 ,.3 0 3.5 4.0 

K 1 

Fig. 2. Schematic phase diagram describing the behavior of the system as a function of the 
coupling constants Ko and KI for values of the noise D and distribution of frequencies given 
in the text. There are four phases: Incoherent (I) when both constants K0 and KI are below 
their critical value. Synchronized (S) and glassy (G) phases are found when K0 is much bigger 
than K~ and vice versa. For intermediate values of the couplings it is possible to find a mixed 
phase provided the phase difference associated with the order parameters that characterize the 
system are adequate. 
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of the coupling constants of the system, keeping constant D = 0.5 and for 
the same distribution of frequencies mentioned previously. 

To understand the nature of the mixed phase, it is interesting to dis- 
cuss the following picture introduced by Van Hemmen. (18) Let us consider 
that our system can be split into two disjoints groups according to the sign 
of ~it h. The points where r 1 are called blue and those with ~,-t/i = - 1 
are called red. Since 

~.r/j-4- Cjr/i= r + ~ j ~ l j )  (3.10) 

the random part of the interaction defined in (1.3) is only different from 0 
for points of the same color and consequently both populations only 
interact via the systematic term Ko. 

Let us imagine for an instant that Ko = 0. Under this condition and 
applying a Mattis transformation (e i~ ~ ~iei~ we can decouple the system 
into a blue ordered subsystem (ferromagnetic) and a frustrated subsystem 
(antiferromagnetic). ~ Now, after the new definition of q and r provided 
by the Mattis transformation the ordered population contributes to q, 
whereas the red oscillators are uncorrelated and do not contribute to r. 
Hence, for K1 large enough ( >  K c) synchronization described by q > 0 and 
r = 0 appears, and we have the glass phase. Further increase of K1 cannot 
change r (=0 )  because there is no interaction between oscillators having 
different color. Setting Ko > 0 allows for an additional interaction between 
red and blue oscillators which in turn may provide r > 0. Then a mixed 
phase is obtained. 

It is interesting to notice the relevance of the negative interaction 
(inhibition) for the control of the activity of the oscillators whose temporal 
correlation can be measured in terms of the different types of synchroniza- 
tion observed. From this point of view a modified version of the system 
studied in this paper might be of interest for neural network models. 

4. B R O W N I A N  S I M U L A T I O N  

In this section we want to confirm the results derived in the previous 
sections through Brownian simulation. We consider a population of 4000 
oscillators coupled following (1.3) and with natural frequencies distributed 
uniformly on the interval [ - 0 . 5 ,  0.51 in 80 groups of 50 elements. 

Our results have been obtained by integrating the stochastic equation 
(1.1) with the Euler method taking as a time step At=0.01 and a level of 
noise described by D = 0.5. As initial starting point we have assumed for 
simplicity that all the oscillators are in phase, i.e., r = 1, but starting from 
the incoherent solution (r = 0) leads to the same outcomes. 
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In Figure 3 we observe the evolution of the order parameters of the 
system for coupling constants Ko = 1.5 and K1 = 0. After a few seconds the 
system settles into its stationary state, which agrees quantitatively and 
qualitatively with the results obtained from the numerical integration of 
the probability density given by (3.3). Notice that our assumption about 
the equality of both order parameters q~ = qr holds for the whole set of 
simulations we have performed and in particular for those represented by 
the figures in this paper. 

In Fig. 4 we can see the evolution of the system in terms of the order 
parameters r and q, = qr for couplings Ko = 0 and K1 = 1.5. As expected, a 
"glass phase" appears which is identified by q values in fair agreement with 
the theoretical prediction. 

Finally, Fig. 5 shows a Brownian simulation describing the mixed 
phase. The coupling constants are K0 = 1.5 and K1 = 1.75. As one can see, 
the system needs a lot of time (compared with previous simulations) to 
reach the stationary state because of the contradictory information that 
arrives at the oscillators. Again, the simulation confirms the results of 
Section 3. 

1.00 

0.80 
o3 

�9 

�9 
0.60 

0 
S._ 
�9 
Q. 

0.40 
�9 

�9 
0.20 

0.00 

q~ q,~ 

~ i ~ i i I i i i i ~ i i i i i i [ i i i i ~ i l"i i i"~ H i i T"l'111~l~l~r ~ii I 

0.00 5.00 10.00 15.00 20.00 25,00 

time (sec) 
Fig. 3. Brownian simulation describing the temporal evolution of a population of oscillators 
with intrinsic frequencies uniformly distributed on [ - 0 . 5 , 0 . 5 ]  in terms of the order 
parameters r,  q~, q , ,  for coupling constants Ko = 1.5 and K1 = 0.0 a n d  a level of noise of 
D = 0.5. As initial condition ( t  = 0 )  we have assumed that all the oscillators are in phase. For 
these values a macroscopic fraction of the total number of oscillators synchronize coherently. 
The straight line shows the theoretical prediction. 
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Fig. 4. The same simulation as in Fig. 3 for K 0 = 0.0 and K 1 = 1.5. The system enters a glassy 
phase where a macroscopic fraction of the oscillators is correlated with the site disorder. Let 
us observe that our assumption about the equality of q's is always verified. 
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Fig. 5. Results of the Brownian simulation for Ko = 1.5 and Ks = 1.75 and v and D of Fig. 3. 
As expected, a mixed phase appears characterized by order parameters r, qo  q, different from 
zero. Now a group of oscillators is synchronized coherently, whereas another group evolves 
in phase opposition. 
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5. D I S C U S S I O N  

We have introduced a model of phase-coupled oscillators with random 
excitatory and inhibitory couplings of Van Hemmen type. New effects 
include the appearance of stable glassy and mixed phases in which part of 
the oscillators are frustrated. The effect of couplings is to favor explicit 
phase differences between pairs of oscillators, but due to the random nature 
of the interactions these differences cannot be satisfied by all of them. The 
existence of these new phases and that of the usual stationary synchronized 
phase has been demonstrated both by means of bifurcation theory and by 
direct Brownian simulation. 

We expect that further new phases will appear when a bimodal 
distribution of intrinsic oscillators frequencies g(e~) is used. In ref. 9 it is 
shown that a new stable phase having a time-periodic order parameter r(t) 
may appear for a bimodal g(co) with widely separated peaks. Besides this 
phase, when Van Hemmen couplings are used, we expect a glassy phase 
with time-periodic q(t) for Ko < K c and K~ > K c. As happens in the present 
paper, it is plausible that for such g(o~) we may find a mixed phase with 
time-periodic r(t) and q(t). Since we have now three order parameters at 
our disposal (r, q, and f f -  4) and a mechanism to generate two different 
frequencies, frequency locking, quasiperiodicity, and chaos might appear. 

It is also interesting to incorporate Van Hemmen couplings to 
different models of neural networks. We could have a model with two or 
more replicas of the present model (with different values of the couplings 
Ko and K~) interacting weakly as in the Sompolinsky et al. model of visual 
perception. (5) This could enable us to describe processes where a group of 
neural oscillators is synchronized coherently whereas another group 
displays phase locking with a phase shift of rc or, perhaps, glassy or mixed 
behavior. This could also be an alternative to the mechanism proposed by 
Wang et aL (21) to control the temporal activity of the neurons. 

After we submitted this paper we learnt of a work by Daido t23) 
analyzing the behavior of a population of coupled oscillators with 
Gaussian random interactions reminiscent of the Sherrington-Kirkpatrick 
model of spin glasses. We have made a brief and preliminary analysis of the 
results and have compared them with those of our model. Daido also finds 
by simulation (he does not present analytical results) a glassy phase 
characterized by an order parameter identical to our qr = q~, although due 
to the features of his model he never finds synchronized or mixed phases. 
The most relevant results are the following. First, he finds an algebraic 
relaxation of the order parameter that characterizes the glassy phase. We 
think that this effect is due to the absence of noise. In the presence of noise 
we believe that an exponential relaxation should appear as was shown 
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recently, (24) although the system was completely different. In our model 
there is no evidence of such algebraic relaxation even for D = 0. The second 
point concerns the diffusive motion of the phases. In our preliminary study 
we have not observed such an effect. These differences are not strange. 
Although both models introduce frustration into the system, they are 
intrinsically different and there is no reason to expect the same type of 
behavior. Looking at these results, it should be interesting to make a more 
exhaustive comparison of both models, but this deserves a deeper analysis 
(in preparation). 
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